

Instructions for use

Table of contents :

1.	Safety instructions	2
2.	Intended use 2.1 Functions	2 3
3.	Package information	3
4.	Overview	4
5.	Assembly	5
6.	Priming 6.1 Dispenser with re-circulation valve mechanism 6.2 Dispenser without re-circulation valve mechanism	6 6 6
7.	Operating instructions 7.1 Volume setting 7.2 Dispensing	7 7 7
8.	Cleaning	8
9.	Error limits	10
10.	Calibration	10
11.	Autoclaving	11
12.	Troubleshooting	12
13.	Recommended Reagents	13-15

1. Safety Instructions

Please read the instruction manual carefully before using the dispenser. Although we have tried to cover maximum safety instructions, this manual can not describe all possible safety hazards. It is responsibility of the user to establish their own safety, health practices and determining the applicability of regulatory limitation prior to the usage of dispenser.

Please follow below safety instructions carefully:-

- Understand all the details in manual before you start using instrument.
- Use protective clothing, eye protection glasses and gloves while working with hazardous liquids.
- Do not dispense inflammable media into plastic vessels which generates static charge.
- This device is not suitable for the below solutions. Concentrated (Hydrochloric Acid, Fluorinated Hydrocarbons, Saline Solutions, Nitric Acid), Highly Concentrated Alkaline Solution and Crystallizing Solution. The liquids attacking FEP, PFA, PTFE, Borosilicate Glass, Al₂O₃, Organic Solvents, Trifluoroacetic Acid, Explosive liquids, Fuming Acids, Tetrahydrofuran, Suspension (e.g. of charcoal) as solid particles.
- Handle the dispenser carefully to avoid any accident during usage.
- The nozzle should always point away from the user while dispensing. Avoid splashes.
- Always use suitable vessels for dispensing liquids.
- Never push down the piston while nozzle cap is on.
- It is recommended to clean the discharge tube regularly.
- Do not give excess pressure while aspirating or dispensing. The glass tube may break inside. Follow trouble shooting guide if you find any difficulty in moving the piston up and down.
- Use original accessories to avoid any kind of accidents.

2. Intended Use

The liquid handling instrument and their accessories are designed and constructed for accurate and precise liquid handling, specially of samples from the human body within the scope of invitro diagnostic application, in order to allow the in-vitro diagnostic medical device to be used as intended.

These dispensers are generally used for dispensing of measured volumes of liquid, repetitively and safely from a liquid bottle.

Our dispensers are made up of high grade engineering plastics like PFA, FEP, PTFE etc. which ensures high performance and adaptability towards various types of liquid.

In addition to ensure high accuracy, true bore glass cylinder is used in the dispenser.

These dispensers can be easily cleaned. It's lower part is also autoclavable to avoid contamination.

2.1 Functions

This instrument is designed for dispensing liquids observing the following limits.

- +15°C to +40°C (59°F to 104°F) instrument and reagent.
- Vapor pressure upto 500 mbar.
- Density upto 2.2 g/cm³
- Kinematic viscosity upto 500 mm²/sec.
 (dynamic viscosity [mPas]=Kinematic Viscosity [mm²/s] x density [g/cm³])

3. Package information

This package includes following :-

- Dispenser 1
- Telescopic filling tube 1
- Re-circulation tube
 1*
- Bottle adapters 4 (Thread sizes : 28, 38, 40 & 45mm)
- Calibration tool
 1
- Service tool
 1
- Connector (only for 100 ml) 1 (Thread size: 40 / 32 mm)
- User manual
- Certificate of conformity / Calibration report
- Warranty card

* This accessory is available only with recirculation valve product.

Note : Bottle adapter of 32 mm thread size is by default and attached with dispenser.

4. Overview

- 1. Cap
- 2. Head
- 3. Main Body
- 4. Pointer
- 5. Volume Knob
- 6. Cylinder Sleeve
- 7. Cylinder
- 8. Piston
- 9. Main Valve
- 10. Valve Piston
- 11. Re-circulation Valve
- 12. Spout
- 13. Front Cover
- 14. Nozzle
- 15. Nozzle Cap
- 16. Air Plug
- 17. Adapter
- 18. Telescopic Filling Tube
- 19. Re-circulation tube
- 20. Inner valve
- 21. Filling valve

Note : Re-circulation tube should be used only in dispenser with re-circulation valve mechanism.

5. Assembly

1. Mounting the telescopic filling tube/ re-circulation tube

Adjust length of the telescoping filling tube to the bottle height and attach it carefully in center. If dispenser with re-circulation valve mechanism is used, the optional re-circulation tube should also be installed. Insert it with opening pointing outward (Fig. 1)

2. Mounting the dispenser on a bottle

Screw the dispenser (GL 32 threads) onto the reagent bottle and ensure to tighten it properly. It is preferable to align the nozzle with graduation mark on main body.

Note : For bottles with other thread sizes, select a suitable adapter.

The adapters supplied with the dispenser are made of polypropylene (PP), and can only be used for reagent which do not attack PP.

Always wear protective gloves when touching the dispenser or the bottle, especially when using dangerous liquids.

When mounted to a reagent bottle, always carry the dispenser as shown in Fig. 3

6. Priming

6.1 Bottle Top Dispenser with re-circulation valve mechanism

WARNING

The nozzle should always point away from the user. Please ensure one should never press down the piston when the nozzle cap is mounted. Avoid splashing.

Please follow below steps for priming (with re-circulation mechanism):-

- 1. Adjust the knob to recirculation mode. (Fig. 5)
- 2. Slowly pull up the piston and push it down rapidly till the end. Repeat this process until air bubbles disappear from the cylinder. (Fig. 6)
- 3. Readjust the knob to dispense.

6.2 Bottle Top Dispenser without re-circulation valve mechanism

Please follow below steps for priming (without re-circulation mechanism):-

- 1. Keep a vessel below the nozzle.
- 2. Hold the spout and carefully open the nozzle cap. (Fig. 7)
- Slowly pull up the piston and push it down rapidly till the end. Repeat this process until air bubbles disappear from the cylinder. (Fig. 6)

7. Operating Instructions

7.1 Volume Setting

Please follow below steps for volume setting:-

- 1) Turn the volume setting knob in anti clockwise direction.
- 2) Adjust the knob to desired volume by moving it up or down.
- 3) Match the pointer with the graduation mark and tighten the knob in clock wise direction.

Now your dispenser is ready to work at your desired set volume. (Fig. 8)

7.2 Dispensing

Please follow all safety instructions before you start.

Please follow below steps for dispensing liquids:-

- 1. Please follow priming process before you start (as shown in point # 6-Priming).
- 2. Turn the knob to dispensing.
- 3. Keep a vessel below the nozzle.
- 4. Set your desired volume (as shown in point # 7.1 Volume setting).
- 5. Gently pull the piston until the upper stop and then push down the piston until lower stop.
- 6. Touch the nozzle against the inner wall of the receiving vessel. Repeat this process as per number of dispensing cycles required.
- 7. Close the nozzle cap to the nozzle.

Note : Do not give excess force while pushing down the piston. If you feel the piston is jammed, please follow trouble shooting guide (point # 12).

Before you fix the nozzle cap, please ensure that the piston is at lower stop.

One can observe slight sound during aspirating the liquid and on shaking the dispenser as a result of ball design.

8. Cleaning

Please make sure to clean the dispenser regularly for it's smooth functioning. In following conditions, cleaning must be done.

- When the piston is stuck inside the glass tube
- Before changing of reagents
- Before longer downtime
- Before autoclaving process
- Before any maintenance

Please make sure to wear suitable eye protection glasses and protective clothing.

Please follow below steps for cleaning:-

- 1. Completely dispense the liquid present inside the dispenser.
- 2. Mount the dispenser on a bottle filled with deionized water or any other suitable cleaning agent and rinse the dispenser several times.
- 3. Pull off the telescopic tube and recirculation tube and clean it with the deionized water.
- 4. In case of dispenser with recirculation valve, change the knob position to re-circulation mode. Again rinse the dispenser for several times.

Please follow below steps to clean the piston and glass barrel:-

This procedure must be followed if the piston is difficult to move or if dispenser is to be autoclaved.

- 1. Unscrew the head as shown in Fig. 9
- Take out the piston completely as shown in Fig. 10 Clean the piston & glass barrel and put them back in their original position and screw back the head

Disassembly of the valve

- 1. Put out the Re-circulation tube & telescopic tube (Fig. 11)
- 2. Use the service tool to unscrew the filling valve and also take out the ball with care. (Fig. 12)

- 3. Use the other side of service tool for screwing with inner valve (Fig. 13) and pull it out-(Fig. 14)
- 4. After Cleaning/Replacement, insert inner valve at same position (Fig. 14)

5. Screw the filling valve first by hand and then tighten it with the service tool.

While aspirating the reagent, if some elastic resistance is evident, then it is possible that the ball valve is stuck.

In this case, loosen the ball valve using light pressure, for example, 200 μl plastic pipette tip (Fig. 14)

9. Error Limits

Error limits related to the nominal capacity (= maximum volume) indicated on the instrument, are obtained when instrument and distilled water are equilibrated at ambient temperature (20°C/68°F). The calibration process is performed as per the EN ISO 8655-5 standard with a completely assembled instrument and uniform dispensing.

Volume	Increment	Inaccuracy (±) %		Imprecision (±) %	
(ml)	(ml)	± %	± ml	± %	± ml
0.25 - 2.5	0.05	0.6	0.015	0.2	0.005
0.5 - 5	0.1	0.5	0.025	0.2	0.01
1 - 10	0.2	0.5	0.05	0.2	0.02
2.5 - 25	0.5	0.5	0.125	0.2	0.05
2.5 - 30	0.5	0.5	0.15	0.2	0.06
5 - 50	1.0	0.5	0.25	0.2	0.1
5 - 60	1.0	0.5	0.3	0.2	0.12
10 - 100	2.0	0.5	0.5	0.2	0.2

* The specifications (inaccuracy and imprecision) are decided on the basis of EN ISO 8655-5 standard.

10. Calibration

MWARNING

During calibration process one has to take the reading at lowest volume first, ensure not to move the body before you close the cap and then proceed to the medium and high volume.

Calibration check

1. Please follow complete calibration procedure given in EN ISO 8655-5 manual like environment conditions, water, weighing balance etc.

Volume adjustment

Please follow below steps to calibrate the dispenser if there is a variation in the desired volume and actual volume:-

- 1. Open the cap with calibration tool as shown in Fig. 16
- 2. Insert the hex tool on hex nut as shown in Fig. 17
- 3. Rotate the hex tool in clockwise direction to decrease the volume, rotate the hex tool in anti clockwise direction to increase the volume.
- 4. Take out the hex tool and close the cap.

11. Autoclaving

This dispenser is autoclavable in following conditions.

Temperature: Pressure: Time: 121°C / 250° Fahrenheit 1.05 bar / 15 psi (pounds) 20 minutes or less

A WARNING

Exceeding the above conditions will damage the parts.

Please follow below steps to autoclave the dispenser:-

- 1. Clean the dispenser thoroughly as described in cleaning section before you start autoclaving.
- 2. Take out following parts :-a) Pull out the piston by unscrewing the headb) Pull off the nozzle cap and telescopic filling tube
- 3. Autoclave all the parts as per above procedure.
- 4. Cool down the parts for atleast 8 hours in room temperature and then reassemble the parts.
- 5. Now the dispenser is ready to be used.

It is recommended to do quick calibration check.

12. Troubleshooting

	Trouble	shooting
Issue	Possible root cause	Corrective action
Piston moves with difficulty or is stuck	Dirt disposition or Formation of crystals	Immediately stop dispensing. Loosen piston with circular motion, but do not disassemble. Follow all cleaning instructions (page 8)
liquid filling/	Volume adjusted to minimum setting	Set to required volume (see page 7)
dispensing problems	Filling valve stuck	Unscrew the filling valve from the main valve, clean it, replace the filling valve if necessary. If the valve ball is stuck use a 200 μ l pipette tip to loosen it (see page 9)
Dispensing not possible	Discharge valve stuck	Pull out the inner valve from the Main valve, clean it, replace the discharge valve if necessary (see page 9), use a 200 μl plastic tip to loosen any ball valve that is stuck
	Reagent with high vapor pressure has been drawn in too quickly	Slowly draw in reagent
Ainbuchter	Valve screw connections loose	Tighten the valves firmly with the service tool
in the	The instrument has not been primed	Prime the instrument (see page 6)
instrument	Filling tube is loose or damaged	Push the filling tube on firmly. If necessary cut off approx. 1 cm of tube at the upper end and re-connect it or replace filling tube
	Valves not firmly connected or damaged	After cleaning the instrument (page 8), tighten the valves using the service tool
Dispensed volume	Filling tube is loose or damaged	After cleaning the instrument (page 8), push the filling tube on firmly. If necessary, cut off approx. 1 cm of the tube at the upper end and re-connect it or replace filling tube
is too low	Filling valve is loose or damaged	After cleaning the instrument (page 8), tighten the valves using the service tool. If necessary, replace filling valves
Leaking liquid between instrument and bottle	Re-circulation tube not connected	Connect re-circulation tube

Recommended Reagents

Below is a list of suitable reagents to work with this dispenser :-

Acetaldehyde
Acetic acid (glacial), 100%
Acetic acid, ≤96%
Acetic anhydride
Acetone
Acetonitrile
Acetophenone
Acetyl chloride
Acetylacetone
Acrylic acid
Acrylonitrile
Adipic acid
Allyl alcohol
Aluminium chloride
Amino acíds
Ammonia,≤20%
Ammonia, 20-30%
Ammonium chloride
Ammonium fluoride
Ammonium sulfate
n-Amyl acetate
Amyl alcohol (Pentanol)
Amyl chloride (Chloropentane)
Aniline
Barium chloride
Benzaldehyde
Benzene (Benzol)
Benzine (Petroleum benzine)
bp 70-180 ℃
Benzoyl chloride
Benzyl alcohol
Benzylamine
Benzylchloride
Boric acid, ≤10%
Bromobenzene
Bromonaphthalene
Butanediol
1-Butanol
n-Butyl acetate

Butyl methyl ether
Butylamine
Butyric acid
Calcium carbonate
Calcium chloride
Calcium hydroxide
Calcium hypochlorite
Carbon tetrachloride
Chloro naphthalene
Chloroacetaldehyde, ≤45%
Chloroacetic acid
Chloroacetone
Chlorobenzene
Chlorobutane
Chloroform
Chlorosulfonic acid
Chromic acid, ≤50%
Chromosulfuric acid
Copper sulfate
Cresol
Cumene (Isopropyl benzene)
Cyclohexane
Cyclohexanone
Cyclopentane
Decane
1-Decanol
Dibenzyl ether
Dichloroacetic acid
Dichlorobenzene
Dichloroethane
Dichloroethylene
Dichloromethane
Diesel oil (Heating oil),
bp 250-350 °C
Diethanolamine
Diethyl ether
Diethylamine
1.2 Diethylbenzene
Diethylene glycol

Recommended Reagents

Dimethyl sulfoxide (DMSO)
Dimethylaniline
Dimethylformamide (DMF)
1.4 Dioxane
Diphenyl ether
Essential oil
Ethanol
Ethanolamine
Ethyl acetate
Ethylbenzene
Ethylene chloride
Fluoroacetic acid
Formaldehyde, ≤40%
Formamide
Formic acid, ≤100%
Glycerol
Glycol (Ethylene glycol)
Glycolic acid, ≤50%
Heating oil (Diesel oil),
bp 250-350 °C
Heptane
Hexane
Hexanoic acid
Hexanol
Hydriodic acid,≤57%
Hydrobromic acid
Hydrochloric acid, ≤20%
Hydrochloric acid. 20-37%
Hydrogen peroxide,≤35%
Hydrogen peroxide,≤35% Isoamyl alcohol
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol)
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether Lactic acid
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether Lactic acid Methanol
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether Lactic acid Methanol Methoxybenzene
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether Lactic acid Methanol Methoxybenzene Methyl benzoate
Hydrogen peroxide,≤35% Isoamyl alcohol Isobutanol Isooctane Isopropanol (2-Propanol) Isopropyl ether Lactic acid Methanol Methoxybenzene Methyl benzoate Methyl butyl ether

Methyl formate
Methyl propyl ketone
Methylene chloride
Mineral oil (Engine oil)
Monochloroacetic acid
Nitric acid, ≤30%
Nitrobenzene
Oleic acid
Oxalic acid
n-Pentane
Peracetic acid
Perchloric acid
Perchloroethylene
Petroleum, bp 180-220 °C
Petroleum ether, bp 40-70 °C
Phenol
Phenylethanol
Phenylhydrazine
Phosphoric acid, ≤85%
Phosphoric acid, 85%
Sulfuric acid, 98% 1:1
Piperidine
Potassium chloride
Potassium dichromate
Potassium hydroxide
Potassium permanganate
Propionic acid
Propylene glycol (Propanediol)
Pyridine
Pyruvic acid
Salicylaldehyde
Scintilation fluid
Silver acetate
Silver nitrate
Sodium acetate
Sodium chloride
Sodium dichromate
Sodium fluoride
Sodium hydroxide, ≤30%
Sodium hypochlorite

Recommended Reagents

Sulfuric acid, ≤98% Tartaric acid Tetrachloroethylene Tetramethylammonium hydroxide Toluene Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Tartaric acid Tetrachloroethylene Tetramethylammonium hydroxide Toluene Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Tetrachloroethylene Tetramethylammonium hydroxide Toluene Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Tetramethylammonium hydroxide Toluene Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Toluene Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Trichloroacetic acid Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Trichlorobenzene Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Trichloroethane Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Trichloroethylene Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Trichlorotrifluoro ethane Triethanolamine Triethylene glycol Trifluoro ethane
Triethanolamine Triethylene glycol Trifluoro ethane
Triethylene glycol Trifluoro ethane
Trifluoro ethane
Trifluoroacetic acid (TFA)
Turpentine
Urea
Xylene
Zinc chloride, ≤10%
Zinc sulfate, ≤10%

A CAUTION:-

Always follow instructions in the operating manual of the dispenser as well as the reagent manufacturer's specifications. In addition to these chemicals, a variety of organic and inorganic saline solutions (e.g., biological buffers), biological detergents and media for cell culture can be dispensed. If used with strong acids, it is advised to rinse & remove dispenser at the end of every working day & store it safely. If require information on chemicals not listed, please contact us.

OXFORD LAB PRODUCTS

www.oxfordlp.com 800-554-4920 San Diego, CA